- 19.1 million flexible-fuel vehicles by 2009, led by Brazil with 9.3 million, followed by the United States (around 9 million), Canada (600,000), and Europe, led by Sweden (181,458). Additionally, 183,375 flexible-fuel motorcycles were sold in Brazil in 2009.
- 11.2 million natural gas vehicles by 2009, led by Pakistan with 2.4 million, Argentina (1.8 million), Iran (1.7 million), Brazil (1.6 million), and India (725 thousand).
- Between 2.4 to 3.0 million neat-ethanol vehicles still in use in Brazil, out of 5.7 million ethanol only light-vehicles produced since 1979.
- More than 2.7 million hybrid electric vehicles by 2009, led by the United States with 1.6 million units, followed by Japan with 870 thousand and Europe (more than 237 thousand). Worldwide, Toyota Motor Company is the leader with more than 2 million hybrids sold by August 2009, followed by Honda Motor Co., Ltd. with more than 300 thousand hybrids sold by January 2009, and Ford Motor Corporation with more than 122 thousand hybrids sold by December 2009.
Contents:
- Single fuel source
- Air engine
- Battery-electric
- Solar
- Ammonia fueled vehicles uses
- Biofuels
- Charcoal
- CNG Compressed Natural Gas
- Hydrogen
- Oxyhydrogen
- Liquid nitrogen car
- LPG or Autogas
- Steam
- Wood gas
- Multiple fuel source
Single fuel source
Air engine
The air engine is an emission-free piston engine that uses compressed air as a source of energy. The first compressed air car was invented by a French engineer named Guygre. The expansion of compressed air may be used to drive the pistons in a modified piston engine. Efficiency of operation is gained through the use of environmental heat at normal temperature to warm the otherwise cold expanded air from the storage tank. This non-adiabatic expansion has the potential to greatly increase the efficiency of the machine. The only exhaust is cold air (−15 °C), which could also be used to air condition the car. The source for air is a pressurized carbon-fiber tank. Air is delivered to the engine via a rather conventional injection system. Unique crank design within the engine increases the time during which the air charge is warmed from ambient sources and a two stage process allows improved heat transfer rates.
Battery-electric
The Henney Kilowatt, the first
modern (transistor-controlled) electric car.
Based on a Renault Dauphine
Battery Electric Vehicles (BEVs), also known as All Electric Vehicles (AEVs), are electric vehicles whose main energy storage is in the chemical energy of batteries. BEVs are the most common form of what is defined by the California Air Resources Board (CARB) as zero emission (ZEV) passenger automobiles, because they produce no emissions while being driven. The electrical energy carried onboard a BEV to power the motors is obtained from a variety of battery chemistries arranged into battery packs. For additional range genset trailers or pusher trailers are sometimes used, forming a type of hybrid vehicle. Batteries used in electric vehicles include "flooded" lead-acid, absorbed glass mat, NiCd, nickel metal hydride, Li-ion, Li-poly and zinc-air batteries.
Attempts at building viable, modern battery-powered electric vehicles began in the 1950s with the introduction of the first modern (transistor controlled) electric car - the Henney Kilowatt,even though the concept was out in the market since 1890. Despite the poor sales of the early battery-powered vehicles, development of various battery-powered vehicles continued through the 1960 (notably General Motors with the EV1), but cost, speed and inadequate driving range continued to make them impractical. Battery powered cars have primarily used lead-acid batteries and NiMH batteries. Lead-acid batteries' recharge capacity is considerably reduced if they're discharged beyond 75% on a regular basis, making them a less-than-ideal solution. NiMH batteries are a better choice, but are considerably more expensive than lead-acid. Lithium-ion battery powered vehicles such as the Venturi Fetish have recently demonstrated excellent performance and range, but they remain very expensive.
General Motors EV1, battery-electric vehicle
In August 2009 Nissan announced the mass production of its first electric car, the Nissan LEAF ("Leading, Environmentally Friendly, Affordable, Family Car"). It is expected to be marketed in North America, Europe, and Japan, beginning in autumn 2010. Although an exact price has not been announced, the car is expected to cost somewhere between $25,000 and $33,000. The car will have a top speed of over 140 km/h (87 mph). The battery can be charged to 80% capacity in about 30 minutes with a special quick charger, and its 24kWh lithium-ion battery pack is rated to have a range of 100 miles (160 km).
Solar
Nuna team at a racecourse.
A solar car is an electric vehicle powered by solar energy obtained from solar panels on the car. Solar panels cannot currently be used to directly supply a car with a suitable amount of power at this time, but they can be used to extend the range of electric vehicles. They are raced in competitions such as the World Solar Challenge and the North American Solar Challenge.
Nuna solar powered car, which has
travelled up to 140km/h (84mph).
Ammonia fueled vehicles
Ammonia GreenNH3 is being used with success by developers in Canada , since it can run in spark ignited or diesel engines with minor modifications,also the only green fuel to power jet engines,, and despite its toxicity is reckoned to be no more dangerous than petrol or LPG It can be made from renewable electricity, and having half the density of petrol or diesel can be readily carried in sufficient quantities in vehicles. On combustion it has no emissions other than nitrogen and water vapour.The Canadian group GreenGas dot cc have developed a machine to make the GreenNH3 from zero carbon energy sources so as not to have any link to carbon. That would be as opposed to brownNH3 which can be made from carbon things like coal or natural gas.
Biofuels
Bioalcohol / Ethanol
The 2003 VW Gol 1.6 Total Flex.
The first commercial vehicle that used ethanol as a fuel was the Ford Model T, produced from 1908 through 1927. It was fitted with a carburetor with adjustable jetting, allowing use of gasoline or ethanol, or a combination of both. Other car manufactures also provided engines for ethanol fuel use. In the United States, alcohol fuel was produced in corn-alcohol stills until Prohibition criminalized the production of alcohol in 1919. The use of alcohol as a fuel for internal combustion engines, either alone or in combination with other fuels, lapsed until the oil price shocks of the 1970s. Furthermore, additional attention was gained because of its possible environmental and long-term economical advantages over fossil fuel. Both ethanol and methanol have been use as an automotive fuel. While both can be obtained from petroleum or natural gas, ethanol has attracted more attention because it is considered a renewable resource, easily obtained from sugar or starch in crops and other agricultural produce such as grain, sugarcane, sugar beets or even lactose. Since ethanol occurs in nature whenever yeast happens to find a sugar solution such as overripe fruit, most organisms have evolved some tolerance to ethanol, whereas methanol is toxic. Other experiments involve butanol, which can also be produced by fermentation of plants. Support for ethanol comes from the fact that it is a biomass fuel, which addresses climate change and greenhouse gas emissions, though these benefits are now highly debated, including the heated 2008 food vs fuel debate. Ethanol has the property of slowly decomposing certain rubber compounds
The 1996 Ford Taurus.
E85 fuel sold at a regular gasoline
station in Washington, D.C..
The Ford Model T was the first
commercial flex-fuel vehicle.
Biodiesel
Bus running on soybean biodiesel.
The main benefit of Diesel combustion engines is that they have a 44% fuel burn efficiency; compared with just 25-30% in the best gasoline engines. In addition diesel fuel has slightly higher Energy Density by volume than gasoline. This makes Diesel engines capable of achieving much better fuel economy than gasoline vehicles.
Biodiesel (Fatty acid methyl ester), is commercially available in most oilseed-producing states in the United States. As of 2005, it is somewhat more expensive than fossil diesel, though it is still commonly produced in relatively small quantities (in comparison to petroleum products and ethanol). Many farmers who raise oilseeds use a biodiesel blend in tractors and equipment as a matter of policy, to foster production of biodiesel and raise public awareness. It is sometimes easier to find biodiesel in rural areas than in cities. Biodiesel has lower Energy Density than fossil diesel fuel, so biodiesel vehicles are not quite able to keep up with the fuel economy of a fossil fuelled diesel vehicle, if the diesel injection system is not reset for the new fuel. If the injection timing is changed to take account of the higher Cetane value of biodiesel, the difference in economy is negligible. Because biodiesel contains more oxygen than diesel or vegetable oil fuel, it produces the lowest emissions from diesel engines, and is lower in most emissions than gasoline engines. Biodiesel has a higher lubricity than mineral diesel and is an additive in European pump diesel for lubricity and emissions reduction.
Some Diesel-powered cars can run with minor modifications on 100% pure vegetable oils. Vegetable oils tend to thicken (or solidify if it is waste cooking oil), in cold weather conditions so vehicle modifications (a two tank system with diesel start/stop tank), are essential in order to heat the fuel prior to use under most circumstances. Heating to the temperature of engine coolant reduces fuel viscosity, to the range cited by injection system manufacturers, for systems prior to 'common rail' or 'unit injection ( VW PD)' systems. Waste vegetable oil, especially if it has been used for a long time, may become hydrogenated and have increased acidity. This can cause the thickening of fuel, gumming in the engine and acid damage of the fuel system. Biodiesel does not have this problem, because it is chemically processed to be PH neutral and lower viscosity. Modern low emission diesels (most often Euro -3 and -4 compliant), typical of the current production in the European industry, would require extensive modification of injector system, pumps and seals etc. due to the higher operating pressures, that are designed thinner (heated) mineral diesel than ever before, for atomisation, if they were to use pure vegetable oil as fuel. Vegetable oil fuel is not suitable for these vehicles as they are currently produced. This reduces the market as increasing numbers of new vehicles are not able to use it. However, the German Elsbett company has successfully produced single tank vegetable oil fuel systems for several decades, and has worked with Volkswagen on their TDI engines. This shows that it is technologically possible to use vegetable oil as a fuel in high efficiency / low emission diesel engines.
Greasestock is an event held yearly in Yorktown Heights, New York, and is one of the largest showcases of vehicles using waste oil as a biofuel in the United States
Biogas
Compressed Biogas may be used for Internal Combustion Engines after purification of the raw gas. The removal of H2O, H2S and particles can be seen as standard producing a gas which has the same quality as Compressed Natural Gas. The use of biogas is particularly interesting for climates where the waste heat of a biogas powered power plant cannot be used during the summer.
Charcoal
In the 1930s Tang Zhongming made an invetion of using abundant Charcoal resources for Chinese auto market.The Charcoal-fuelled car was later used intensively in China,serving the army and conveyancer after the breakout of WWII.
CNG Compressed Natural Gas
The Brazilian Fiat Siena Tetrafuel 1.4.
High pressure compressed natural gas, mainly composed of methane, that is used to fuel normal combustion engines instead of gasoline. Combustion of methane produces the least amount of CO2 of all fossil fuels. Gasoline cars can be retrofitted to CNG and become bifuel NGV Natural gas vehicles as the gasoline tank stays. You can switch between CNG and gasoline during operation. Natural gas vehicles (NGVs) are popular in regions or countries where natural gas is abundant. Widespread use began in the Po River Valley of Italy, and later became very popular in New Zealand by the eighties, though its use has declined.
Buses powered with CNG are common in the United States.
As of 2009 there were 11,2 million natural gas vehicles by 2009, led by Pakistan with 2.4 million, Argentina (1.8 million), Iran (1.7 million), Brazil (1.6 million), and India (725 thousand). with South America leading the global market with a share of 39%. In Europe they are popular in Italy (580,000), Ukraine (200,000), Russia (100,000) and Germany (85,000), and they are becoming more so as various manufacturers produce factory made cars, buses, vans and heavy vehicles. In the United States CNG powered buses are the favorite choice of several public transit agencies, with an estimated CNG bus fleet of some 130,000. Other countries where CNG-powered buses are popular include India, Australia, Argentina, and Germany.
CNG vehicles are common in South America, where these vehicles are mainly used as taxicabs in main cities of Argentina and Brazil. Normally, standard gasoline vehicles are retrofitted in specialized shops, which involve installing the gas cylinder in the trunk and the CNG injection system and electronics. The Brazilian GNV fleet is concentrated in the cities of Rio de Janeiro and São Paulo.
In 2006 the Brazilian subsidiary of FIAT introduced the Fiat Siena Tetra fuel, a four-fuel car developed under Magneti Marelli of Fiat Brazil. This automobile can run on 100% ethanol (E100), E25 (Brazil's normal ethanol gasoline blend), pure gasoline (not available in Brazil), and natural gas, and switches from the gasoline-ethanol blend to CNG automatically, depending on the power required by road conditions. Other existing option is to retrofit an ethanol flexible-fuel vehicle to add a natural gas tank and the corresponding injection system. Some taxicabs in São Paulo and Rio de Janeiro, Brazil, run on this option, allowing the user to choose among three fuels (E25, E100 and CNG) according to current market prices at the pump. Vehicles with this adaptation are known in Brazil as "tri-fuel" cars.
Hydrogen
Hydrogen fueling station in California.
A hydrogen car is an automobile which uses hydrogen as its primary source of power for locomotion. These cars generally use the hydrogen in one of two methods: combustion or fuel-cell conversion. In combustion, the hydrogen is "burned" in engines in fundamentally the same method as traditional gasoline cars. In fuel-cell conversion, the hydrogen is turned into electricity through fuel cells which then powers electric motors. With either method, the only byproduct from the spent hydrogen is water. Honda introduced its fuel cell vehicle in 1999 called the FCX and have since then introduced the second generation FCX Clarity. Limited marketing of the FCX Clarity, based on the 2007 concept model, began in June 2008 in the United States, and it was introduced in Japan in November 2008. The FCX Clarity is available in the U.S. only in Los Angeles Area, where 16 hydrogen filling stations are available, and until July 2009, only 10 drivers have leased the Clarity for US$600 a month. Honda stated that it could start mass producing vehicles based on the FCX concept by the year 2020. A small number of prototype hydrogen cars currently exist, and a significant amount of research is underway to make the technology more viable. The common internal combustion engine, usually fueled with gasoline (petrol) or diesel liquids, can be converted to run on gaseous hydrogen. However, the most efficient use of hydrogen involves the use of fuel cells and
Sequel, a hydrogen fuel cell-powered
vehicle from General Motors.
Oxyhydrogen
Oxyhydrogen is another fuel that can be used in existing internal combustion engines (originally developed for using gasoline). This allows the engine to eliminate emissions, although fuel efficiency is reduced rather than improved (since the energy required to split water exceeds the energy recouped by burning it).
Liquid nitrogen car
Liquid nitrogen (LN2) is a method of storing energy. Energy is used to liquify air, and then LN2 is produced by evaporation, and distributed. LN2 is exposed to ambient heat in the car and the resulting nitrogen gas can be used to power a piston or turbine engine. The maximum amount of energy that can be extracted from 1 kg of LN2 is 213 W-hr or 173 W-hr per liter, in which a maximum of 70 W-hr can be utilized with an isothermal expansion process. Such a vehicle can achieve ranges similar to that of gasoline with a 350 liter (90 gallon) tank. Theoretical future engines, using cascading topping cycles, can improve this to around 110 W-hr/kg with a quasi-isothermal expansion process. The advantages are zero harmful emissions and superior energy densities than compressed air, and a car powered by LN2 can be refilled in a matter of minutes.
LPG or Autogas
A propane-fueled school bus
in the United States.
LPG or liquified petroleum gas is a low pressure liquified gas mixture composed mainly of propane and butane which burns in conventional gasoline combustion engines with less CO2 than gasoline. Gasoline cars can be retrofitted to LPG aka Autogas and become bifuel vehicles as the gasoline tank stays. You can switch between LPG and gasoline during operation. Estimated 10 million vehicles running worldwide.
In the U.S., 190,000 on-road vehicles use propane, and 450,000 forklifts use it for power. It is the third most popular vehicle fuel in America, behind gasoline and diesel.
Hyundai Motor Company began sales of the Elantra LPI Hybrid in the South Korean domestic market in July 2009. The Elantra LPI (Liquefied Petroleum Injected) is the world's first hybrid electric vehicle to be powered by an internal combustion engine built to run onliquefied petroleum gas (LPG) as a fuel.
Steam
The Stanley Steam Car.
A steam car is a car that has a steam engine. Wood, coal, ethanol, or others can be used as fuel. The fuel is burned in a boiler and the heat converts water into steam. When the water turns to steam, it expands. The expansion creates pressure. The pressure pushes the pistons back and forth. This turns the driveshaft to spin the wheels forward. It works like a coal-fueled steam train, or steam boat. The steam car was the next logical step in independent transport.
Steam cars take a long time to start, but some can reach speeds over 100 mph (161 km/h) eventually. the late model doble could be brought to operational condition in less than 30 seconds, and were fast, with high acceleration, but they were ridiculously expensive.
A steam engine uses external combustion, as opposed to internal combustion. Gasoline-powered cars are more efficient at about 25-28% efficiency. In theory, a combined cycle steam engine in which the burning material is first used to drive a gas turbine can produce 50% to 60% efficiency. However, practical examples of steam engined cars work at only around 5-8% efficiency.
The best known and best selling steam-powered car was the Stanley Steamer. It used a compact fire-tube boiler under the hood to power a simple two-piston engine which was connected directly to the rear axle. Before Henry Ford introduced monthly payment financing with great success, cars were typically purchased outright. This is why the Stanley was kept simple; to keep the purchase price affordable.
Steam produced in refrigeration also can be use by a turbine in other vehicle types to produce electricity, that can be employed in electric motors or stored in a battery.
Steam power can be combined with a standard oil-based engine to create a hybrid. Water is injected into the cylinder after the fuel is burned, when the piston is still superheated, often at temperatures of 1500 degrees or more. The water will instantly be vaporized into steam, taking advantage of the heat that would otherwise be wasted.
Wood gas
Vehicle with a gasifier.
Wood gas can be used to power cars with ordinary internal combustion engines if a wood gasifier is attached. This was quite popular during World War II in several European and Asian countries because the war prevented easy and cost-effective access to oil.
Multiple fuel source
Flexible fuel
Six typical Brazilian full flex-fuel models.
A flexible-fuel vehicle (FFV) or dual-fuel vehicle is an alternative fuel automobile or light duty truck with a multifuel engine that can use more than one fuel, usually mixed in the same tank, and the blend is burned in the combustion chamber together. These vehicles are colloquially called flex-fuel, or flexifuel in Europe, or just flex in Brazil. FFVs are distinguished from bi-fuel vehicles, where two fuels are stored in separate tanks. The most common commercially available FFV in the world market is the ethanol flexible-fuel vehicle, with the major markets concentrated in the United States, Brazil, Sweden, and some other European countries. In addition to flex-fuel vehicles running with ethanol, in the US and Europe there were successful test programs with methanol flex-fuel vehicles, known as M85 FFVs, and more recently there have been also successful tests using p-series fuels with E85 flex fuel vehicles, but as of June 2008, this fuel is not yet available to the general public. Ethanol flexible-fuel vehicles have standard gasoline engines that are capable of running with ethanol and gasoline mixed in the same tank. These mixtures have "E" numbers which describe the percentage of ethanol in the mixture, for example, E85 is 85% ethanol and 15% gasoline. (See common ethanol fuel mixtures for more information.) Though technology exists to allow ethanol FFVs to run on any mixture up to E100, in the U.S. and Europe, flex-fuel vehicles are optimized to run on E85. This limit is set to avoid cold starting problems during very cold weather. The alcohol content might be reduced during the winter, to E70 in the U.S. or to E75 in Sweden. Brazil, with a warmer climate, developed vehicles that can run on any mix up to E100, though E20-E25 is the mandatory minimum blend, and no pure gasoline is sold in the country. By 2009 there were around 19 million flexible-fuel vehicles worldwide, led by Brazil with 9.3 million, followed by the United States (almost 9 million), Canada (600,000), and Europe, led by Sweden (181,458). In addition, 183,375 flexible-fuel motorcycles were sold in Brazil in 2009. In Brazil, 65% of flex-fuel owners use ethanol fuel regularly in 2009, while, the actual number of American FFVs being run on E85 is much lower; surveys conducted in the U.S. have found that 68% of American flex-fuel car owners were not aware they owned an E85 flex. This is thought to be due to a number of factors, including:
- Typical labeling used in the US to identify E85 vehicles. Top left: a small sticker in the back of the fuel filler door. Bottom left: the bright yellow gas cap now used in newer models. Top right: the E85 Flexfuel badging used in newer Ford models. Bottom right: the E85 Flexfuel badging used in newer GM models.
- The appearance of flex-fuel and non-flex-fuel vehicles is identical;
- There is no price difference between a pure-gasoline vehicle and its flex-fuel variant;
- The lack of consumer awareness of flex-fuel vehicles;
- The lack of promotion of flex-fuel vehicles by American automakers, who often do not label the cars or market them in the same way they do to hybrid cars.
By contrast, automakers selling FFVs in Brazil commonly affix badges advertising the car as a flex-fuel vehicle. As of 2007, new FFV models sold in the U.S. were required to feature a yellow gas cap emblazoned with the label "E85/gasoline", in order to remind drivers of the cars' flex-fuel capabilities. Use of E85 in the U.S. is also affected by the relatively low number of E85 filling stations in operation across the country, with just over 1,750 in August 2008, most of which are concentrated in the Corn Belt states, led by Minnesota with 353 stations, followed by Illinois with 181, and Wisconsin with 114. By comparison, there are some 120,000 stations providing regular non-ethanol gasoline in the United States alone. US E85FlexFuel Chevrolet Impala LT 2009. There have been claims that American automakers are motivated to produce flex-fuel vehicles due to a loophole in the Corporate Average Fuel Economy (CAFE) requirements, which gives the automaker a "fuel economy credit" for every flex-fuel vehicle sold, whether or not the vehicle is actually fueled with E85 in regular use. This loophole allegedly allows the U.S. auto industry to meet CAFE fuel economy targets not by developing more, more fuel-efficient models, but by spending between $100 and $200 extra per vehicle to produce a certain number of flex-fuel models, enabling them to continue selling less fuel-efficient vehicles such as SUVs, which netted higher profit margins than smaller, more fuel-efficient cars. In the United States, E85 FFVs are equipped with sensor that automatically detect the fuel mixture, signaling the ECU to tune spark timing and fuel injection so that fuel will burn cleanly in the vehicle's internal combustion engine. Originally, the sensors were mounted in the fuel line and exhaust system; more recent models do away with the fuel line sensor. Another feature of older flex-fuel cars is a small separate gasoline storage tank that was used for starting the car on cold days, when the ethanol mixture made ignition more difficult.
US E85FlexFuel Chevrolet Impala
LT 2009.
Modern Brazilian flex-fuel technology enables FFVs to run an any blend between E20-E25 gasohol and E100 ethanol fuel, using a lambda probe to measure the quality of combustion, which informs the engine control unit as to the exact composition of the gasoline-alcohol mixture. This technology, developed by the Brazilian subsidiary of Bosch in 1994, and further improved and commercially implemented in 2003 by the Italian subsidiary of Magneti Marelli, is known as "Software Fuel Sensor". The Brazilian subsidiary of Delphi Automotive Systems developed a similar technology, known as "Multifuel", based on research conducted at its facility in Piracicaba, São Paulo. This technology allows the controller to regulate the amount of fuel injected and spark time, as fuel flow needs to be decreased to avoid detonation due to the high compression ratio (around 12:1) used by flex-fuel engines.
The latest innovation within the Brazilian flexible-fuel technology, is the development of flex-fuel motorcycles. In 2007 Magneti Marelli presented the first motorcycle with flex technology, adapted on a Kasinski Seta 125. Delphi Automotive Systems also presented in 2007 its multifuel injection technology for motorcycles. The first flex motorcycle was launched by Honda in March 2009. Produced by its Brazilian subsidiary Moto Honda da Amazônia, the CG 150 Titan Mix is sold for around US$2,700. Because the motorcycle does not have a secondary gas tank for a cold start like the Brazilian flex cars do, the tank must have at least 20% of gasoline to avoid start up problems at temperatures below 15°C (59°F). The motorcycle’s panel includes a gauge to warn the driver about the actual ethanol-gasoline mix in the storage tank.
Hybrid
The Toyota Prius Plug-in Hybrid.
A hybrid vehicle uses multiple propulsion systems to provide motive power. The most common type of hybrid vehicle is the gasoline-electric hybrid vehicles, which use gasoline (petrol) and electric batteries for the energy used to power internal-combustion engines (ICEs) and electric motors. These motors are usually relatively small and would be considered "underpowered" by themselves, but they can provide a normal driving experience when used in combination during acceleration and other maneuvers that require greater power. The Toyota Prius is one of the world's first commercially mass-produced and marketed hybrid automobiles. The Prius first went on sale in Japan in 1997 and it is sold worldwide since 2000. By 2009 the Prius is sold in more than 40 countries and regions, with its largest markets being those of Japan and North America. In May 2008, global cumulative Prius sales reached the 1 million vehicle mark, and by August 31, 2008, the Prius reached worldwide cumulative sales of 1.43 million units. As the top seller market, there were 814 thousand Prius registered in the U.S. by December 2009. The Honda Insight is a two-seater hatchback hybrid automobile manufactured by Honda. It was the first mass-produced hybrid automobile sold in the United States, introduced in 1999, and produced until 2006. Honda introduced the second-generation Insight in Japan in February 2009, and the new Insight went on sale in the U.S. on April 22, 2009. Honda also offers the Honda Civic Hybrid since 2002.
The Chevrolet Volt is a plug-in hybrid
able to run in all-electric
mode up to 40 miles.
Among others, the following are popular gasoline-electric hybrid models available in the market by 2009: Ford Escape Hybrid, Chevrolet Silverado/GMC Sierra Hybrid, Lexus RX 400h, Toyota Highlander Hybrid, Mercury Mariner Hybrid, Toyota Camry Hybrid, Saturn Vue Green Line, Lexus LS600hL, Mazda Tribute Hybrid, Nissan Altima Hybrid, Ford Fusion/Mercury Milan Hybrid, and Mercedes S400 BlueHybrid.
Toyota, GM, Ford and other major carmakers are currently developing plug-in hybrid electric vehicles (PHEVs). Chinese battery manufacturer and automaker BYD Auto released the F3DM PHEV-68 (PHEV109km) hatchback to the Chinese fleet market on December 15, 2008. The Chevrolet Volt is one of the first PHEVs that will be mass produced in the U.S., and it is expected to be launched in November 2010 as a 2011 model. Its price is estimated to be near $40,000.
The Elantra LPI Hybrid, launched in the South Korean domestic market in July 2009, is a hybrid vehicle powered by an internal combustion engine built to run onliquefied petroleum gas (LPG) as a fuel. The Elantra PLI is a mild hybrid and the first hybrid to adopt advanced lithium polymer (Li–Poly) batteries.
Pedal-assisted electric hybrid vehicle
The Sinclair C5 pedal-assisted
battery vehicle.
In very small vehicles, the power demand decreases, so human power can be employed to make a significant improvement in battery life. Two such commercially made vehicles are the Sinclair C5 and the TWIKE.
The Sinclair C5 is a battery electric vehicle invented by Sir Clive Sinclair and launched in the United Kingdom on 10 January 1985. The vehicle is a battery-assisted tricycle steered by a handlebar beneath the driver's knees. Powered operation is possible making it unnecessary for the driver to pedal. Its top speed of 15 miles per hour (24 km/h), is the fastest allowed in the UK without a driving licence. It sold for £399 plus £29 for delivery. It became an object of media and popular ridicule during 1980s Britain and was a commercial disaster, selling only around 12,000 units.